ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
G. Paquignon, D. Brisset, V. Lamaison, J. Manzagol, P. Bonnay, E. Bouleau, D. Chatain, D. Communal, J-P. Perin
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 764-768
Technical Paper | doi.org/10.13182/FST07-A1475
Articles are hosted by Taylor and Francis Online.
The Laser Megajoule (LMJ) Cryotarget Positioner (PCC) will be used to set cryogenic targets in the vacuum chamber centre of this experimental facility for fusion by inertial confinement. In the French concept, only the targets will be transferred at cryogenic temperature to the PCC, using a Cryotarget Transfer Unit (UTCC). Some of the specifications are very ambitious. Indeed, the targets must be transferred automatically between those cryorobots, at a temperature between 20 K and 29 K. Then, they have to be cooled carefully by the PCC to the triple point (TP) of deuterium-tritium mixture at a rate of 0.5 mK/min. Just below the TP they have to be regulated with an accuracy of +/- 2 mK. Eventually, the DT mixture has to be set 1.5 K below the TP.Scale one prototypes of the cryostats have been built at the Low Temperature Laboratory (SBT) in CEA-Grenoble, France, to deal with specific issues: cryogenic contact resistances, fine cryogenic temperature regulation, test of the feasibility of various thermodynamic paths, 6 degrees of freedom robot positioner, vision control of the transfer and automation. This paper presents the results obtained with these prototypes regarding topics specific to cryogenic transfers, followed by very fine regulation of temperature around 20 K and by dynamic quenching just before the laser shot.