ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
G. Paquignon, D. Brisset, V. Lamaison, J. Manzagol, P. Bonnay, E. Bouleau, D. Chatain, D. Communal, J-P. Perin
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 764-768
Technical Paper | doi.org/10.13182/FST07-A1475
Articles are hosted by Taylor and Francis Online.
The Laser Megajoule (LMJ) Cryotarget Positioner (PCC) will be used to set cryogenic targets in the vacuum chamber centre of this experimental facility for fusion by inertial confinement. In the French concept, only the targets will be transferred at cryogenic temperature to the PCC, using a Cryotarget Transfer Unit (UTCC). Some of the specifications are very ambitious. Indeed, the targets must be transferred automatically between those cryorobots, at a temperature between 20 K and 29 K. Then, they have to be cooled carefully by the PCC to the triple point (TP) of deuterium-tritium mixture at a rate of 0.5 mK/min. Just below the TP they have to be regulated with an accuracy of +/- 2 mK. Eventually, the DT mixture has to be set 1.5 K below the TP.Scale one prototypes of the cryostats have been built at the Low Temperature Laboratory (SBT) in CEA-Grenoble, France, to deal with specific issues: cryogenic contact resistances, fine cryogenic temperature regulation, test of the feasibility of various thermodynamic paths, 6 degrees of freedom robot positioner, vision control of the transfer and automation. This paper presents the results obtained with these prototypes regarding topics specific to cryogenic transfers, followed by very fine regulation of temperature around 20 K and by dynamic quenching just before the laser shot.