ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. Choux, L. Jeannot, F. Gillot, F. Sandras, M. Martin, C. Gauvin, G. Pascal, E. Busvelle, J. P. Gauthier, P. Baclet
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 727-736
Technical Paper | doi.org/10.13182/FST07-A1470
Articles are hosted by Taylor and Francis Online.
The measurements of the solid DT layer, in terms of thickness and roughness, in the LMJ geometry (i.e. in a hohlraum) are not trivial. The DT layer measurements will be done using a Matsukov-Cassegrain telescope placed 39 cm away from the target. This telescope will be used to acquire shadowgraphy images on equators, and interferometric measurements on pole areas using optical coherence tomography (OCT). Optical coherence tomography allows determining the DT layer thickness on a few points, in the polar regions of the target. By scanning around the poles, several points can be acquired in order to calculate the roughness and the local shape of the DT layer at the pole. Both techniques were demonstrated on a 175 m thick microshell with a 100 m thick D2 layer. A reconstruction algorithm was designed to give the whole shape of the DT layer from the partial data given by shadowgraphy and OCT. A 3D spatial estimation of the DT layer can be obtained. The algorithm efficiency was improved, with the use of 360 points on shadowgraphic image and 11 points on each pole. An estimation of the spatial DT layer shape was given on the first 90 longitudinal modes and on the first 5 equatorial modes.