ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
A. I. Nikitenko, S. M. Tolokonnikov
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 705-716
Technical Paper | doi.org/10.13182/FST07-A1468
Articles are hosted by Taylor and Francis Online.
A method of ICF targets parameters reconstruction from the set of backlit shadowgraph images was developed. Proposed approach can be used for nondestructive inner (DT ice in the case of cryotarget) surface quality characterization of single- and double-layered targets and shells.Previously designed computer 3D ray-tracing model allowed us to carry out detailed investigation of the target shadowgraph image formation, to localize rays forming bright ring and to infer analytical description of this rays' group. Having been guided by this experience we designed an algorithm of inner surface shape determination using bright ring location on target's image and developed corresponding software package.This package provides a wide set of image processing tools: both general processing (pointwise operations, spatial filtering, maximums and edges localization, etc.) and specific methods (3D reconstruction, inner and outer surfaces RMS and power spectra estimation, results' visualization in different forms, etc).Proposed method and its software implementation were tested using two kinds of image sets - set of backlit photographs of real one-layered shells and set of digitally synthesized shadowgraph images.