ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kimberly A. DeFriend, Brent Espinoza, Brian Patterson
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 693-700
Technical Paper | doi.org/10.13182/FST07-A1466
Articles are hosted by Taylor and Francis Online.
The sol-gel methods applied in the synthesis of aerogels lead to the formation of a disordered silica network. The resulting aerogel has poor structural definition that leads to poor mechanical properties. The work presented details our efforts to create a new hierarchical mesoporous silica aerogel. These meso-porous aerogels were formed utilizing a templating technique using polystyrene beads with varying diameters, 50 nm to 2 m, dispersed during sol-gel polymerization. The resulting gel was super-critically dried creating a silica aerogel templated with polystyrene beads. The polystyrene beads were then thermal oxidized creating meso-porous silica aerogel monolith. The surface area, pore volume, pore diameter, and mechanical properties of the templated aerogels were determined. Interestingly the mechanical properties of the meso-porous aerogel were significantly improved. These improvements appear to be directly related to the polystyrene bead diameter and loading.