ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. R. Paguio, M. Takagi, M. Thi, J. F. Hund, A. Nikroo, S. Paguio, R. Luo, A. L. Greenwood, O. Acenas, S. Chowdhury
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 682-687
Technical Paper | doi.org/10.13182/FST51-682
Articles are hosted by Taylor and Francis Online.
Previously we have developed a production process for both standard density (100 mg/cc) and high-density (180-200 mg/cc) resorcinol formaldehyde (RF) foam shells with a triple orifice droplet generator. These foam shells are needed for direct drive inertial confinement laser fusion experiments on the OMEGA laser facility at the University of Rochester. Although this process has been developed into production mode, the yield of high density RF (HDRF) and standard density (SDRF) shells with acceptable wall uniformity has been poor. This yield depends on the type of RF shell that is being fabricated. For HDRF this yield is ~5% while for the SDRF shells the yield is ~30%. We have made improvements in the yield of these shells that meet the wall uniformity specification by modifying the composition of the outer oil solution (O2) in the microencapsulation emulsion. This improvement was achieved by a small addition (0.60 wt.%) of a styrene-butadiene-styrene (SBS) block copolymer into the outer oil (O2) solution that increased the interfacial tension of the emulsion system as well as the viscosity of the O2 solution. This modification improved the out of round and concentricity of the RF foam shells resulting in an increase in the yield of shells that meet the target wall uniformity specifications.