ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
T. Craciunescu, A. Murari, I. Tiseanu, J. Vega, JET-EFDA Contributors
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 339-346
Selected Paper from the Seventh Fusion Data Validation Workshop 2012 (Part 1) | doi.org/10.13182/FST12-A14625
Articles are hosted by Taylor and Francis Online.
Multifaceted asymmetric radiation from the edge (MARFE) instabilities may reduce confinement leading to harmful disruptions. They cause a significant increase in impurity radiation, and therefore, they leave a clear signature in the video data. This information can be exploited for automatic identification and tracking. A MARFE classifier, based on the phase congruency theory, has been developed and adjusted to extract the structural information in the images of Joint European Torus (JET) cameras. This approach has the advantage of using a dimensionless quantity and providing information that is invariant to image illumination, contrast, and magnification. The method was tested on JET experimental data and has proved to provide a good prediction rate.