ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Sengupta, P. Ranjan
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 1-17
Technical Paper | doi.org/10.13182/FST01-A146
Articles are hosted by Taylor and Francis Online.
In this paper, we examine the possibility of using a multilayered feedforward neural network to extract tokamak plasma parameters from magnetic measurements as an improvement over the traditional methodology of function parametrization. It is also used to optimize the number and locations of the magnetic diagnostics designed for the tokamak. This work has been undertaken with the specific purpose of application of the neural network technique to the newly designed (and currently under fabrication) Superconducting Steady-State Tokamak-1 (SST-1). The magnetic measurements will be utilized to achieve real-time control of plasma shape, position, and some global profiles. A trained neural network is tested, and the results of parameter identification are compared with function parametrization. Both techniques appear well suited for the purpose, but a definite improvement with neural networks is observed. Although simulated measurements are used in this work, confidence regarding the network performance with actual experimental data is ensured by testing the network's noise tolerance with Gaussian noise of up to 10%. Finally, three possible methods of ranking the diagnostics in decreasing order of importance are suggested, and the neural network is used to optimize the number and locations of the magnetic sensors designed for SST-1. The results from the three methods are compared with one another and also with function parametrization. Magnetic probes within the plasma-facing side of the outboard limiter have been ranked high. Function parametrization and one of the neural network methods show a distinct tendency to favor the probes in the remote regions of the vacuum vessel, proving the importance of redundancy. Fault tolerance of the optimized network is tested. The results obtained should, in the long run, help in the decision regarding the final effective set of magnetic diagnostics to be used in SST-1 for reconstruction of the control parameters.