ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
C. A. Frederick, C. A. Back, A. Nikroo, M. Takagi
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 647-650
Technical Paper | doi.org/10.13182/FST07-A1458
Articles are hosted by Taylor and Francis Online.
Target design for the National Ignition Facility requires either a glass or polyimide (PI) fill tube. To study the hydrodynamic effects that are introduced by a fill tube during capsule implosion, fill tube targets were fabricated for experiments at the Z-Pinch facility. Three and four fill tube targets were designed and fabricated to maximize data during each experiment. Targets were made with PI and glass fill tubes on the same capsule to study the shadowing differences between glass and plastic fill tubes. Four tube targets were fabricated with diameters ranging from 10-45 m to study the effect diameter has on implosion characteristics. Capsules were coated with a germanium-doped layer of glow discharge polymer. Blind holes were drilled in the capsules using an excimer laser. Fill tubes were fabricated using modified capillary pullers and assembly was done on a specially designed assembly station designed for fill tube fabrication. Targets were characterized by optical microscopy and by micron resolution x-ray tomography.