ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Masaru Takagi, Kyle Saito, Christopher Frederick, Abbas Nikroo, Robert Cook
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 638-642
Technical Paper | doi.org/10.13182/FST51-638
Articles are hosted by Taylor and Francis Online.
We have developed a technique for drawing commercially available polyimide tubing to the required fill tube dimensions. The tubes are then precisely cut with an Excimer laser to produce a clean, flat tip. We have also demonstrated that one can use the Excimer laser to drill less than a 5 m diameter through hole in the ~150 wall of a NIF dimension GDP shell, and can then create a 10-15 m diameter, 20-40 m deep counterbore centered on the through hole with the same laser. Using a home built assembly station the tube is carefully inserted into the counterbore and glued in place with UV-cure epoxy, using a LED UV source to avoid heating the joint. We expect that the same joining technique can be used for Be shells.