ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. G. Czechowicz, J. A. Dorman, J. C. Geronimo, C. J. Chen
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 631-637
Technical Paper | doi.org/10.13182/FST51-631
Articles are hosted by Taylor and Francis Online.
We developed a production tungsten sputter coating process to uniformly deposit tungsten on 840 m outer diameter GDP shells using a bounce coating technique. We were able to control the tungsten-coating rate and therefore coating thickness based on gravimetric analysis. At the end of our work we could routinely produce uniform 0.5 m tungsten coatings on GDP shells with a Δ wall 0.04 m. Techniques were developed and applied to measure coating uniformity based on x-radiography and x-ray fluorescence data. Typical surface roughness values for bounce coated shells having a 0.5 m tungsten coating were 40 to 50 nm RMS. Stationary GDP shells were coated with 0.5 m tungsten and found to have surface roughness approaching 10 nm RMS, which was similar to the roughness of the underlying GDP mandrel surface. This result indicates that coating processes with less agitation such as tap or roll coating may produce much smoother tungsten coatings