ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
D. G. Czechowicz, J. A. Dorman, J. C. Geronimo, C. J. Chen
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 631-637
Technical Paper | doi.org/10.13182/FST51-631
Articles are hosted by Taylor and Francis Online.
We developed a production tungsten sputter coating process to uniformly deposit tungsten on 840 m outer diameter GDP shells using a bounce coating technique. We were able to control the tungsten-coating rate and therefore coating thickness based on gravimetric analysis. At the end of our work we could routinely produce uniform 0.5 m tungsten coatings on GDP shells with a Δ wall 0.04 m. Techniques were developed and applied to measure coating uniformity based on x-radiography and x-ray fluorescence data. Typical surface roughness values for bounce coated shells having a 0.5 m tungsten coating were 40 to 50 nm RMS. Stationary GDP shells were coated with 0.5 m tungsten and found to have surface roughness approaching 10 nm RMS, which was similar to the roughness of the underlying GDP mandrel surface. This result indicates that coating processes with less agitation such as tap or roll coating may produce much smoother tungsten coatings