ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. L. Hoppe, Sr., D. A. Steinman
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 606-610
Technical Paper | doi.org/10.13182/FST07-A1452
Articles are hosted by Taylor and Francis Online.
Progress has been made in reducing and quantifying residual gases in shells manufactured by the silicon doped glow discharge polymer (SiGDP) to glass process. Previously, glass shells were made using a high temperature, open-air box oven. If the temperature profile used was sufficient, clear, colorless shells were obtained which had ~1/3 of an atmosphere of residual gas consisting of a mixture of N2, O2, CO and CO2 with generally N2 and CO2 being the major constituents. Improvements to the process were made by utilizing a controlled atmosphere, high temperature oven and developing an improved temperature profile for the SiGDP to glass conversion process. It is now possible to manufacture clear, colorless glass shells containing noble gas(es), which is a first for the ICF program. In addition, the improvements in our process has led to shells containing less residual gas (N2, CO, and CO2) than previously obtainable. Tailored deuterium halflifes are also possible by adjusting the final sintering temperature which results in glass that is very near but not full density which allows in some cases for fielding of glass shells with half-lives which can be more suitable to the experimentalist.