ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. A. Moreno, H. W. Xu, A. Nikroo, H. Huang, J. Fong, J. E. Knipping, J. L. Kaae, E. M. Giraldez
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 581-585
Technical Paper | doi.org/10.13182/FST07-A1448
Articles are hosted by Taylor and Francis Online.
Rayleigh-Taylor experiments have been designed for the OMEGA laser facility at the Laboratory for Laser Energetics (LLE) of the University of Rochester to explore perturbations during implosion of this ablator. For the experiment to be relevant, the beryllium copper flat used as the target must be similar in chemical makeup and morphology to the NIF ignition target. To visualize the perturbation growth, the flats were fabricated with sinusoidal perturbations on one side of a wavelength of 50 m and amplitude of 0.25 m. The flats were doped with more copper than required in the NIF ablator specification to increase the x-ray optical depth during burn through. These flats were successfully fabricated using a mold technique. This technique, as well as the characterization techniques used to verify the chemical makeup and thicknesses, will be described in this paper.