ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Robert C. Cook
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 559-563
Technical Paper | doi.org/10.13182/FST07-A1444
Articles are hosted by Taylor and Francis Online.
In this paper we show that the ambient temperature measured leakage time constant, RT, is related to the leakage at cryogenic temperature, RC, byRC = 0.23DTVsh/RTwhere DT is the density of cryogenic DT vapor, and Vsh is the internal volume of the shell. We then calculate the size of voids that may result from leakage at the Be/DT interface, depending upon the number of leakage sites and RT. Even for the slowest leakers the potential void growth is excessive. Reasons that voids have not been seen in DT layering experiments to date include the lack of a technique to see isolated micronish bubbles, however possible mechanisms preventing void formation are also discussed.