ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A. Nikroo, H. W. Xu, K. A. Moreno, K. P. Youngblood, J. Cooley, C. S. Alford, S. A. Letts, R. C. Cook
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 553-558
Technical Paper | doi.org/10.13182/FST07-A1443
Articles are hosted by Taylor and Francis Online.
Graded copper-doped Be shells have been fabricated by sputter coating on spherical mandrels. While such coatings have consistent microstructure and acceptable void content and size, we have found that they suffer from sufficient interconnected porosity leading to relatively rapid gas leakage. In this paper, we present an extensive study of D2 leakage out of Be shells made by sputter coating. The leakage appears to follow molecular flow dynamics as determined by examining the temperature dependence of the flow. Furthermore, the time dependence of the leakage suggests that the flow channels are nanometerish in diameter, propagating through the thickness of the coating, possibly brought about by residual stress in the coatings. We have investigated the D2 leakage time constant as a function of a large number of coating parameters, including the effect of introducing boron-doped layers. Addition of thin 0.25 m amorphous boron-doped layers near the inside surface has been most effective in producing shells with long time constants (greater than 7 days to immeasurable) with yield of greater than 50%. There is still substantial scatter in the data, even within a given coating batch, suggesting a possible stochastic cracking process driven by residual stress in the coating.