ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. W. Xu, C. S. Alford, J. C. Cooley, L. A. Dixon, R. E. Hackenberg, S. A. Letts, K. A. Moreno, A. Nikroo, J. R. Wall, K. P. Youngblood
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 547-552
Technical Paper | doi.org/10.13182/FST51-547
Articles are hosted by Taylor and Francis Online.
Various morphologies have been observed in sputter-deposited Be ablator capsules, including nodular growth, cone growth and twisted grain growth. By devising an agitation method that includes both bouncing and rolling the spherical mandrels during deposition, and by reducing the coating rate, consistent columnar grain structure has now been obtained up to 170 mm. Low mode deformation of the shells is observed on thin CH mandrels, but is suppressed if stiffer mandrels are used. Ablator density measured by weighing and x-ray radiography is 93%.95% of bulk density of Be. Transmission electron microscopy shows 100.200 nm size voids in the film and striations inside the grains. Be shells produced with rolling agitation have met most of the NIF specifications. Some of the few remaining issues will be discussed.