ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
J. E. Rice, J. L. Terry, K. B. Fournier, E. S. Marmar
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 451-459
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1432
Articles are hosted by Taylor and Francis Online.
The Rydberg series (1s2 to 1snp) up to n = 14 of helium-like argon (Z = 18) has been observed from Alcator C-Mod plasmas using a high-resolution X-ray spectrometer array. High-n satellites to these lines of the form 1s22s to 1s2snp and 1s22p to 1s2pnp with 3 n 12 have been recorded. X-ray spectra of 2l - nl' transitions with 3 n 18 in molybdenum (Z = 42) and 3 n 12 in krypton (Z = 36) and niobium (Z = 41) from charge states around neon-like have also been measured. Numerous examples of the configuration interaction, which alters the line intensities in some transitions of neon-like ions with nearly degenerate upper levels, have been observed. Accurate wavelengths of all of these transitions (±0.5 mÅ) have been determined by comparison to neighboring reference lines from H- and He-like charge states. Line identifications have been made by comparison to ab initio atomic structure calculations, using a fully relativistic, parametric potential code. Measured line intensities have been compared with collisional radiative modeling that includes the contributions from dielectronic recombination and inner shell excitation rates, with good agreement.