ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. A. Snipes, N. Basse, P. Bonoli, C. Boswell, E. Edlund, A. Fasoli, R. S. Granetz, L. Lin, Y. Lin, R. Parker, M. Porkolab, J. Sears, V. Tang, S. Wukitch
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 437-450
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1431
Articles are hosted by Taylor and Francis Online.
Energetic particle physics is studied in Alcator C-Mod in reactor relevant regimes with high density and equilibrated electron and ion temperatures. Stable Alfvén eigenmodes are excited with low-power active magnetohydrodynamic antennas in the absence of a significant energetic particle tail to directly measure the damping rate of the modes. Stable toroidal Alfvén eigenmode (TAE) damping rates between 0.5% < / < 4.5% have been observed in diverted and limited plasmas. Alfvén eigenmodes are destabilized with high-power hydrogen minority ion cyclotron radio frequency (ICRF) heating (PICRF < 6 MW) in lower-density plasmas in the current rise and in relatively high-density ([bar]ne < 2.5 × 1020 m-3) H-mode plasmas, which creates an energetic hydrogen ion tail with calculated energies up to 400 keV. Low toroidal mode number (n < 4) unstable modes are observed in the current rise with magnetic pickup coils at the wall and phase contrast imaging density fluctuation measurements in the core. Observations of energetic particle modes or TAEs that decrease in frequency and mode number with time up to a large sawtooth collapse indicate that fast particles play a role in stabilizing sawteeth. Alfvén eigenmodes can also be used as diagnostics to precisely constrain the q profile and provide a qualitative measure of the fast particle distribution time evolution.