ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. T. Bonoli, R. Parker, S. J. Wukitch, Y. Lin, M. Porkolab, J. C. Wright, E. Edlund, T. Graves, L. Lin, J. Liptac, A. Parisot, A. E. Schmidt, V. Tang, W. Beck, R. Childs, M. Grimes, D. Gwinn, D. Johnson, J. Irby, A. Kanojia, P. Koert, S. Marazita, E. Marmar, D. Terry, R. Vieira, G. Wallace, J. Zaks, S. Bernabei, C. Brunkhorse, R. Ellis, E. Fredd, N. Greenough, J. Hosea, C. C. Kung, G. D. Loesser, J. Rushinski, G. Schilling, C. K. Phillips, J. R. Wilson, R. W. Harvey, C. L. Fiore, R. Granetz, M. Greenwald, A. E. Hubbard, I. H. Hutchinson, B. LaBombard, B. Lipschultz, J. Rice, J. A. Snipes, J. Terry, S. M. Wolfe, Alcator C-Mod Team
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 401-436
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1430
Articles are hosted by Taylor and Francis Online.
This paper reviews the physics and technology of wave-particle-interaction experiments in the ion cyclotron range of frequencies (ICRF) and the lower hybrid (LH) range of frequencies (LHRF) on the Alcator C-Mod tokamak. Operation of fixed frequency (80 MHz) and tunable (40- to 80-MHz) ICRF transmitters and the associated transmission system is described. Key fabrication issues that were solved in order to operate a four-strap ICRF antenna in the compact environment of C-Mod are discussed in some detail. ICRF heating experiments utilizing the hydrogen (H) and helium-3 (3He) minority heating schemes are described, and data are presented demonstrating an overall heating efficiency of 70 to 90% for the (H) minority scheme and somewhat lower efficiency for (3He) minority heating. Mode conversion electron heating experiments in D(3He), D(H), and H(3He) discharges are also reported as well as simulations of these experiments using an advanced ICRF full-wave solver. Measurements of mode-converted ion cyclotron waves and ion Bernstein waves using a phase contrast imaging diagnostic are presented and compared with the predictions of a synthetic diagnostic code that utilizes wave electric fields from a full-wave solver. The physics basis of the LH current profile control program on Alcator C-Mod is also presented. Computer simulations using a two-dimensional (velocity space) Fokker Planck solver indicate that ~200 kA of LH current can be driven in low-density H-mode discharges on C-Mod with ~3 MW of LHRF power. It is shown that this off-axis LH current drive can be used to create discharges with nonmonotonic profiles of the current density and reversed shear. An advanced tokamak operating regime near the ideal no-wall limit is described for C-Mod, where ~70% of the current is driven through the bootstrap effect. The LH power is coupled to C-Mod through a waveguide launcher consisting of four rows (vertically) with 24 guides per row (toroidally). A detailed description of the LH launcher fabrication is given in this paper along with initial operation results.