ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Hiroo Numata, Izumi Ohno
Fusion Science and Technology | Volume 38 | Number 2 | September 2000 | Pages 206-223
Technical Paper | doi.org/10.13182/FST00-A143
Articles are hosted by Taylor and Francis Online.
The physicochemical properties of the Pd-H system were studied by in situ potentiometric, resistance, and dilatometric measurements in each of three applied pulse modes, A, B, and C, and repeated H absorption and desorption. Potential, resistance ratio, and an increase in dilation (l/l0) were measured simultaneously after H equilibrium was attained with the Pd electrode. During continuous absorption, structural phase transition ( [right arrow] ) and void formation occurred, and the values of the H/Pd ratio in the limiting phase, in the + phase coexistence, and in the transition and the +voids coexistence regions are consistent with those obtained from the Pd-H isotherm at 40°C. Hydrogen absorption caused the dilation, from whose slope the molar volume was obtained as 0.64 ( phase) and 0.40 ( + phase) cm3/mol. The resistance increased in proportion to the H/Pd ratio and was kept constant at 1.7 to 1.8 over Rtr.For the first absorption through the phase (>min), the electrode potential shifted with an increase in dilation, which suggests nonequilibrium PdH2-x precipitation followed by conversion to the phase and void formation. Although there was a remarkable lack of any dependence on the number of repetitions of the values of the limiting resistance and potential corresponding to the + and + void coexistence, the onset of the phase, min, increased as the number of repetitions increased. The volumetric ratio for an increase in the H/Pd ratio corresponds to the absorption in high-density defect areas surrounding voids. During repeated absorption and desorption in the C applied pulse mode, the apparent molar volumes of the + phase coexistence show that absorption proceeds inhomogenously, in contrast to the first absorption in the A applied pulse mode.