ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
B. Lipschultz, B. LaBombard, S. Lisgo, J. L. Terry
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 390-400
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1429
Articles are hosted by Taylor and Francis Online.
The high neutral densities and short neutral mean-free-paths in the Alcator C-Mod divertor have provided a unique testing ground for our understanding of the role of neutrals in a tokamak. The high neutral pressures found in the C-Mod divertor can be reproduced in models only by including such processes as ion-neutral and neutral-neutral collisions and neutral viscosity, as well as taking into account the plasma in the private flux region. After detachment, when the divertor plate ion flux has dropped by more than an order of magnitude, the divertor pressure still remains high. High neutral collisionality and the plasma in the private flux region again help keep neutrals in the divertor along with the large source of neutrals due to recombination. Likewise, diffusive neutrals are the explanation for the divertor neutral pressure's insensitivity to strike point position. Closure of neutral leakage pathways did not lead to a decrease in neutral pressures in the region outside the divertor - the main chamber. This observation prompted further research, which showed that ion fluxes to main chamber surfaces rival those reaching the divertor plates; the main chamber pressure can be primarily determined by the level of ion transport perpendicular to the magnetic field. This finding has spawned a host of studies (active and passive) both at C-Mod and other tokamaks to understand how radial transport can be so large.