ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. E. Rice, J. L. Terry, E. S. Marmar, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, J. H. Irby, S. M. Wolfe, T. Sunn Pedersen
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 357-368
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1427
Articles are hosted by Taylor and Francis Online.
Trace nonrecycling impurities (scandium and CaF2) have been injected into Alcator C-Mod plasmas in order to determine impurity transport coefficient profiles in a number of operating regimes. Recycling Ar has also been injected to characterize steady-state impurity density profiles. Subsequent impurity emission has been observed with spatially scanning X-ray and vacuum ultraviolet spectrometer systems, in addition to very high spatial resolution X-ray and bolometer arrays viewing the plasma edge. Measured time-resolved brightness profiles of helium-, lithium-, and beryllium-like transitions have been compared with those calculated from a transport code that includes impurity diffusion and convection, in conjunction with an atomic physics package for individual line emission. Similar modeling has been performed for the edge observations, which are unresolved in energy. The line time histories and the profile shapes put large constraints on the impurity diffusion coefficient and convection velocity profiles. In L-mode plasmas, impurity confinement times are short (~20 ms), with diffusivities in the range of 0.5 m2/s, anomalously large compared to neoclassical values. During Enhanced D (EDA) H-modes, the impurity confinement times are longer than in L-mode plasmas, and the modeling suggests that there exists inward convection (50 m/s) near the plasma edge, with greatly reduced diffusion (of order 0.1 m2/s), also in the region of the edge transport barrier. These edge values of the transport coefficients during EDA H-mode are qualitatively similar to the neoclassical values. In edge localized mode-free H-mode discharges, impurity accumulation occurs, dominated by large inward impurity convection in the pedestal region. A scaling of the impurity confinement time with H-factor reveals a very strong exponential dependence. In internal transport barrier discharges, there is significant impurity accumulation inside of the barrier foot, typically at r/a> = 0.5. Steady-state impurity density profiles in L-mode plasmas have a large up-down asymmetry near the last closed flux surface. The impurity density enhancement, in the direction opposite to the ion B × [nabla]B drift, is consistent with modeling of neoclassical parallel impurity transport.