ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. L. Fiore, D. R. Ernst, J. E. Rice, K. Zhurovich, N. Basse, P. T. Bonoli, M. J. Greenwald, E. S. Marmar, S. J. Wukitch
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 303-316
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1424
Articles are hosted by Taylor and Francis Online.
Internal transport barriers (ITBs) marked by steep density and pressure profiles and reduction of core transport are obtained in Alcator C-Mod. Transient single barriers are observed at the back-transition from H- to L-mode and also when pellet injection is accompanied by ion cyclotron resonance frequency (ICRF) power. Double barriers are induced with injection of off-axis ICRF power deposition. These also arise spontaneously in ohmic H-mode plasmas when the H-mode lasts for several energy confinement times. C-Mod provides a unique platform for studying such discharges: The ions and electrons are tightly coupled by collisions with Ti/Te = 1, and the plasma has no internal particle or momentum sources. ITB plasmas with average pressure greater than 1 atm have been obtained. To form an ITB, particle and thermal flux are reduced in the barrier region, allowing the neoclassical pinch to peak the density while maintaining the central temperature. Gyrokinetic simulation suggests that long-wavelength drift wave turbulence in the core is marginally stable at the ITB onset, but steepening of the density profile destabilizes trapped electron modes (TEMs) inside the barrier. The TEM ultimately drives sufficient outgoing particle flux to balance the inward pinch and halt further density rise, which allows control of particle and impurity peaking.