ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. E. Rice, E. S. Marmar, P. T. Bonoli, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, J. W. Hughes, I. H. Hutchinson, J. H. Irby, B. LaBombard, W. D. Lee, Y. Lin, D. Mossessian, J. A. Snipes, S. M. Wolfe, S. J. Wukitch
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 288-302
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1423
Articles are hosted by Taylor and Francis Online.
Spontaneous toroidal rotation of impurity ions has been observed in the core of Alcator C-Mod plasmas with no external momentum input. The magnitude of the rotation ranges from -60 km/s (countercurrent) in limiter L-mode discharges to +140 km/s (cocurrent) in ion cyclotron range of frequencies-heated H-mode plasmas. The core rotation in L-mode plasmas is generally countercurrent and is found to depend strongly on the magnetic topology; in near double null discharges, the core rotation changes by 25 km/s with a variation of a few millimeters in the distance between the primary and secondary separatrices. In H-mode plasmas, the rotation increments in the cocurrent direction with the toroidal rotation velocity increase proportional to the corresponding stored energy increase, normalized to the plasma current. These discharges exhibit a positive Er in the core. Immediately following the transition from L-mode into enhanced D (EDA) H-mode, the cocurrent rotation appears near the plasma edge and propagates to the center on a time scale similar to the energy confinement time but much less than the neoclassical momentum diffusion time, indicating both the role of the plasma boundary in the dynamics of the H-mode transition and the anomalous nature of momentum transport. Rotation velocity profiles are flat in EDA H-mode plasmas and centrally peaked for edge-localized mode-free H-modes, demonstrating the effects of an inward momentum pinch. In EDA H-mode discharges that develop internal transport barriers, the core toroidal rotation inside the barrier foot is observed to drop on a time scale similar to the core pressure profile peaking (hundreds of milliseconds), indicating a negative Er well in the core region.