ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. E. Rice, E. S. Marmar, P. T. Bonoli, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, J. W. Hughes, I. H. Hutchinson, J. H. Irby, B. LaBombard, W. D. Lee, Y. Lin, D. Mossessian, J. A. Snipes, S. M. Wolfe, S. J. Wukitch
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 288-302
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1423
Articles are hosted by Taylor and Francis Online.
Spontaneous toroidal rotation of impurity ions has been observed in the core of Alcator C-Mod plasmas with no external momentum input. The magnitude of the rotation ranges from -60 km/s (countercurrent) in limiter L-mode discharges to +140 km/s (cocurrent) in ion cyclotron range of frequencies-heated H-mode plasmas. The core rotation in L-mode plasmas is generally countercurrent and is found to depend strongly on the magnetic topology; in near double null discharges, the core rotation changes by 25 km/s with a variation of a few millimeters in the distance between the primary and secondary separatrices. In H-mode plasmas, the rotation increments in the cocurrent direction with the toroidal rotation velocity increase proportional to the corresponding stored energy increase, normalized to the plasma current. These discharges exhibit a positive Er in the core. Immediately following the transition from L-mode into enhanced D (EDA) H-mode, the cocurrent rotation appears near the plasma edge and propagates to the center on a time scale similar to the energy confinement time but much less than the neoclassical momentum diffusion time, indicating both the role of the plasma boundary in the dynamics of the H-mode transition and the anomalous nature of momentum transport. Rotation velocity profiles are flat in EDA H-mode plasmas and centrally peaked for edge-localized mode-free H-modes, demonstrating the effects of an inward momentum pinch. In EDA H-mode discharges that develop internal transport barriers, the core toroidal rotation inside the barrier foot is observed to drop on a time scale similar to the core pressure profile peaking (hundreds of milliseconds), indicating a negative Er well in the core region.