ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. E. Rice, E. S. Marmar, P. T. Bonoli, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, J. W. Hughes, I. H. Hutchinson, J. H. Irby, B. LaBombard, W. D. Lee, Y. Lin, D. Mossessian, J. A. Snipes, S. M. Wolfe, S. J. Wukitch
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 288-302
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1423
Articles are hosted by Taylor and Francis Online.
Spontaneous toroidal rotation of impurity ions has been observed in the core of Alcator C-Mod plasmas with no external momentum input. The magnitude of the rotation ranges from -60 km/s (countercurrent) in limiter L-mode discharges to +140 km/s (cocurrent) in ion cyclotron range of frequencies-heated H-mode plasmas. The core rotation in L-mode plasmas is generally countercurrent and is found to depend strongly on the magnetic topology; in near double null discharges, the core rotation changes by 25 km/s with a variation of a few millimeters in the distance between the primary and secondary separatrices. In H-mode plasmas, the rotation increments in the cocurrent direction with the toroidal rotation velocity increase proportional to the corresponding stored energy increase, normalized to the plasma current. These discharges exhibit a positive Er in the core. Immediately following the transition from L-mode into enhanced D (EDA) H-mode, the cocurrent rotation appears near the plasma edge and propagates to the center on a time scale similar to the energy confinement time but much less than the neoclassical momentum diffusion time, indicating both the role of the plasma boundary in the dynamics of the H-mode transition and the anomalous nature of momentum transport. Rotation velocity profiles are flat in EDA H-mode plasmas and centrally peaked for edge-localized mode-free H-modes, demonstrating the effects of an inward momentum pinch. In EDA H-mode discharges that develop internal transport barriers, the core toroidal rotation inside the barrier foot is observed to drop on a time scale similar to the core pressure profile peaking (hundreds of milliseconds), indicating a negative Er well in the core region.