ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Greenwald, N. Basse, P. Bonoli, R. Bravenec, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J. Irby, B. LaBombard, L. Lin, Y. Lin, B. Lipschultz, E. Marmar, D. Mikkelsen, D. Mossessian, P. Phillips, M. Porkolab, J. Rice, W. Rowan, S. Scott, J. Snipes, J. Terry, S. Wolfe, S. Wukitch, K. Zhurovich
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 266-287
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1422
Articles are hosted by Taylor and Francis Online.
Global and local transport experiments in ohmic, L-mode and H-mode regimes on the Alcator C-Mod tokamak are summarized. For ohmic plasmas, earlier results derived for energy confinement scaling in the Alcator (linear) regime have been confirmed, and the saturated confinement regime has been shown to be equivalent to that of L-mode. For auxiliary heated regimes, C-Mod provided a unique laboratory to test the standard scaling laws that had been previously derived. C-Mod's L-mode performance matches the L-mode scaling laws quite well, but the confinement times in H-mode were about 50% above the existing H-mode scaling laws. This difference was significant and pointed up shortcomings in the range and conditioning of the existing database. H-mode studies emphasize quasi-steady regimes with good energy confinement, no impurity accumulation, and no large edge-localized modes. A new H-mode regime, where the pedestal is regulated by a continuous quasi-coherent mode, has been investigated extensively. The regime is most accessible at higher safety factor, triangularity, and collisionality and at low ion mass, suggesting that the mode is a form of resistive ballooning. Studies on C-Mod first showed the quantitative link between edge temperatures, core temperature gradients, and core confinement. This link unified L-mode and H-mode and established a strong connection between local and global transport. Further work on the role of critical gradient lengths and marginal stability lent quantitative support to the ion temperature gradient theories for ion transport and have helped elucidate nonlinear saturation mechanisms for the turbulence. Local transport studies demonstrated connections between transport channels, with energy, particle, and momentum transport varying across regimes in similar ways. Experiments carried out in collaboration with the DIII-D, ASDEX-U, and JET groups confirmed the dimensionless scaling approach over the widest available range in machine sizes. These studies suggest that plasma physics is the dominant influence on transport in the core and pedestal for standard L- and H-mode discharges. Dimensionless scaling experiments have shown a strong improvement in confinement with the normalized gyro size (1/*). Confinement was found to be Bohm-like in L-mode and gyro-Bohm-like in H-mode. These experiments also showed a strong degradation in confinement with collisionality.