ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Kaitsuka et al. (19P75)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 415-417
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1420
Articles are hosted by Taylor and Francis Online.
Wave propagation around the ECR layer in the GAMMA 10 plug region is analyzed by calculating the dispersion relation of an electron cyclotron wave in a hot plasma. Then, the spatial distribution of microwave power deposition and the absorption rate along each microwave ray are calculated. The absorption rate is experimentally evaluated by using an array of waveguide antennas. The calculated value well agrees with the experimental one on reasonable assumption that the extraordinary mode shares about 90% of the injected microwave power. This analysis is used to obtain an axisymmetric power deposition distribution. It is shown that the heating wave should be directed somewhat upward than the direction to the on-axis point on the resonance layer. This is because a larger power is deposited in the injection side lower side to the machine axis. For the plug in GAMMA 10, an injection beam with an elliptic cross section is suitable to obtain a circular distribution of power deposition.