ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. P. C. Wong, V. S. Chan, A. M. Garofalo, R. Stambaugh, M. E. Sawan, R. Kurtz, B. Merrill
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 283-288
Fusion Technology Facilities | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14148
Articles are hosted by Taylor and Francis Online.
A fusion nuclear science facility (FNSF) is a necessary complement to ITER, especially in the area of material and component testing needed for DEMO design development. FNSF-AT, which takes advantage of advanced tokamak (AT) physics, should have neutron wall loading of 1-2 MW/m2 , continuous operation for periods of up to 2 weeks, a duty factor goal of 0.3 per year, and an accumulated fluence of 3-6 MW-yr/m2 ([approximately]30-60 dpa) in 10 years to enable the qualification of structural, blanket, and functional materials, components, and corresponding ancillary equipment necessary for the design and licensing of a DEMO. Base blankets with a ferritic steel structure and selected tritium blanket materials will be tested and used for the demonstration of tritium sufficiency. Additional test ports at the outboard midplane will be reserved for test blankets with advanced designs or exotic materials and electricity production for integrated high-fluence testing in a DT fusion spectrum. FNSF-AT will be designed using conservative implementations of all elements of AT physics to produce 150-300 MW of fusion power with modest energy gain (Q < 7) in a modest-sized normal conducting coil device. It will demonstrate and help to select the DEMO plasma-facing, structural, tritium-breeding, and functional materials and ancillary equipment including diagnostics. It will also demonstrate the necessary tritium fuel cycle, design and cooling of the first wall chamber, and divertor components. It will contribute to the knowledge on material qualification, licensing, operational safety, and remote maintenance necessary for DEMO design.