ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
M. García, F. Ogando, P. Sauvan, J. Sanz, D. López, B. Brañas
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 265-271
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14145
Articles are hosted by Taylor and Francis Online.
Linear IFMIF Prototype Accelerator (LIPAC) is the prototype accelerator of the Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility (IFMIF) project. The EVEDA phase is a first IFMIF step devoted to the construction of prototypes of the main units. The deuteron beam of LIPAC (125 mA, 9 MeV) is stopped by a conical copper beam stop, giving rise to neutron and photon sources that must be shielded to comply with dose requirements. A reliable characterization of these secondary sources is a mandatory task.The built-in-semi-analytical nuclear models used by advanced Monte Carlo transport codes as Monte Carlo N-Particle eXtended (MCNPX) or Particle and Heavy Ion Transport code System (PHITS) have been demonstrated as unreliable for describing deuteron interactions and secondary particle production at these low energies. The use of reliable external nuclear data is consequently necessary in the design of the LIPAC shielding. In particular, the TENDL-2010 library has been compared with recently published experimental data demonstrating its reliability for deuteron interaction on copper at 9 MeV. The Monte Carlo Universidad Nacional de Educación a Distancia (MCUNED) code has been developed to make use of external nuclear data, and its use with the TENDL-2010 library has proven very satisfactory for LIPAC radioprotection analysis.The impact on radioprotection tasks in LIPAC when the unreliable nuclear models mentioned above are used is discussed.