ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Daniel López, Javier Sanz, Francisco Ogando
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 252-257
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14143
Articles are hosted by Taylor and Francis Online.
During the IFMIF/EVEDA phase, a 125 mA and 9 MeV deuteron prototype accelerator will be designed and tested for the final IFMIF project. Deuteron losses will occur during operation of the accelerator at several components as well as at the beam stopping, leading to material activation induced by deuterons and/or by secondary neutrons, depending on the location. This work is focused on the residual dose rate assessment inside the accelerator vault due to the radioactive inventory induced in the main accelerator components, the outside concrete structures of the accelerator vault, and the concrete-made local shielding of the beam dump. The results will be useful for maintenance work planning, identifying hot areas in the accelerator region. The adopted computational procedure uses MCUNED for determination of spatial distribution of deuteron and neutron fluxes, ACAB for activation calculations, and MCNPX for transport of decay gammas. Deuteron transport cross sections are taken from TENDL-2010 and decay and activation cross-section data from EAF-2007.