ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Keitaro Kondo, Ulrich Fischer, Volker Heinzel, Axel Klix, Arkady Serikov
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 226-232
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14139
Articles are hosted by Taylor and Francis Online.
This work presents neutronic analyses to support the layout of the high energy beam transport (HEBT) section of the IFMIF neutron source in the framework of the Broader Approach (BA) EVEDA activities. In the HEBT section, neutron back streaming from the lithium target can cause significant damage to accelerator components and result in their activation. In order to estimate the resulting radiation doses, detailed neutron and photon flux distributions inside the Target Interface Room (TIR) and the Radiation Isolation Room (RIR) during operation are evaluated by using the Monte Carlo code McDeLicious, which is an enhancement to MCNP5. The obtained results show that the major contribution to the TIR dose during operation will come from neutrons streaming from the target through the beam ducts and from secondary photons produced in these parts. It seems to be impossible to use any semiconductor devices inside TIR, while for mechanical devices there should be no problem. The dose after shutdown due to decay gammas was preliminarily estimated for the beam duct at the most activated place in TIR. In order to reduce the shutdown dose rate, the use of a low-Mn-content aluminium alloy is proposed.