ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Keitaro Kondo, Ulrich Fischer, Volker Heinzel, Axel Klix, Arkady Serikov
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 226-232
IFMIF | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14139
Articles are hosted by Taylor and Francis Online.
This work presents neutronic analyses to support the layout of the high energy beam transport (HEBT) section of the IFMIF neutron source in the framework of the Broader Approach (BA) EVEDA activities. In the HEBT section, neutron back streaming from the lithium target can cause significant damage to accelerator components and result in their activation. In order to estimate the resulting radiation doses, detailed neutron and photon flux distributions inside the Target Interface Room (TIR) and the Radiation Isolation Room (RIR) during operation are evaluated by using the Monte Carlo code McDeLicious, which is an enhancement to MCNP5. The obtained results show that the major contribution to the TIR dose during operation will come from neutrons streaming from the target through the beam ducts and from secondary photons produced in these parts. It seems to be impossible to use any semiconductor devices inside TIR, while for mechanical devices there should be no problem. The dose after shutdown due to decay gammas was preliminarily estimated for the beam duct at the most activated place in TIR. In order to reduce the shutdown dose rate, the use of a low-Mn-content aluminium alloy is proposed.