ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. P. Catalán, J. Sanz, F. Ogando, R. Pampin
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 190-195
Blanket Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST11-425
Articles are hosted by Taylor and Francis Online.
Under the Spanish Breeding Blanket Technology Program TECNO_FUS, a conceptual design of a dual-coolant lithium-lead (DCLL) blanket for DEMO is being revisited. In this work, different shielding candidate materials are assessed in their ability to satisfy the radiation load requirements that must be fulfilled in the toroidal field (TF) coils: absorbed dose in the insulator (Epoxy), peak fast neutron fluence in the superconductor (Nb3Sn), peak nuclear heating in the winding pack and maximum neutron fluence in the cooper stabilizer. Furthermore, the impact of the material choice on waste management requirements of both shielding and vacuum vessel (VV) materials is evaluated, and the performance of candidate materials is examined in terms of the helium production in the VV SS316LN material and its implications in reweldability. Materials discussed for the High Temperature Shield are Eurofer, graphite, B4C, WC and WB4C, while the metal hydrides ZrH2, Zr(BH4)4, and TiH2 are discussed for the Low Temperature Shield. In the case of DEMO irradiation scenario, all the analyzed material combinations fulfill the design requirements for the waste management of the shield and VV, He production in the VV wall and TF coils radiation loads requirements.