ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yosuke Abe, Tomoaki Suzudo, Shiro Jitsukawa, Tomohito Tsuru, Takashi Tsukada
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 139-144
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14126
Articles are hosted by Taylor and Francis Online.
It is known that the presence of even a small amount of impurity in interstitial positions can, depending on temperature, have a drastic influence on the one-dimensional (1-D) motion of self-interstitial atom (SIA) loops, and thus, on the accumulation of radiation damage in materials. In this study, atomic-scale computer simulations based on a recently developed optimization technique have been performed to evaluate the binding energies of SIA loops with interstitial carbon, a vacancy-carbon (V-C) complex, and a vacancy as a function of loop size in -iron. While weak and strong attractive interactions are found when an interstitial carbon atom and a vacancy, respectively, are located on the perimeter of an SIA loop, the interactions for both quickly weaken approaching the loop center. In contrast, for a wide range of loop sizes, significantly higher binding energies are obtained between an SIA loop and a V-C complex located within the habit plane of the loop. A cluster dynamics model was developed by taking into account the trapping effects of V-C complexes on 1-D migrating SIA loops, and preliminary calculations were performed to demonstrate the validity of the assumed trapping mechanism through a comparison of the microstructural evolution with experimental data in neutron-irradiated -iron.