ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
W. Krauss, N. Holstein, J. Lorenz, J. Konys
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 129-133
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14124
Articles are hosted by Taylor and Francis Online.
In fusion technology, functional scales are required for various application fields like first wall tungsten coating, anti-corrosion or tritium permeation barriers, and brazing layers in joining technology. Established processes for layer deposition exhibit several kinds of drawbacks ranging from difficulty controlling layer thickness, inhomogeneity of coatings, application limits because of geometrical reasons, or critical thermal loading. Inherently, electrochemical plating technology does not exhibit these critical features. Growing of galvanic layers depends on the transported charge and thus can easily be controlled by current flow and/or deposition time. The main part of this development work was focused on voltammetric analyses to assist the deposition of transition metals on refractory metal surfaces, e.g., tungsten and Eurofer steel, and to deliver boundary conditions for electrolytes. Typical elements that can be used in joining may range from Ti, V by Ni, Fe up to Pd, and Cu. However, a direct joining of tungsten onto Eurofer steel by copper is metallurgically impossible due to missing miscibility of copper with tungsten. Thus, interlayers with an active functionality are required, which interact with both bulk components and filler to obtain a sound braze joint brazing. For both W-W and W-Eurofer joints, demonstrators were successfully fabricated and analyzed by metallurgical and physical methods.