ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Steffen Antusch, Marcus Müller, Prachai Norajitra, Gerald Pintsuk, Volker Piotter, Hans-Joachim Ritzhaupt-Kleissl, Tobias Weingärtner
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 110-115
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14121
Articles are hosted by Taylor and Francis Online.
Fusion technology as a possible and promising alternative energy source for the future is intensively investigated at Karlsruhe Institute of Technology (KIT). The KIT divertor design for the future DEMO fusion power plant is based on a modular concept of He-cooling finger units. More than 250,000 single parts are needed for the whole divertor system, where the most promising divertor material, tungsten, must withstand steady-state heat loads of up to 10 MW/m2.Powder injection molding (PIM) as a mass-oriented manufacturing method of parts with high near-net-shape precision has been adapted and developed at KIT for producing tungsten parts, which provides a cost-saving alternative compared to conventional machining. While manufactured tungsten parts are normally composed of only one material, two-component PIM applied in this work allows the joining of two different materials, e.g., tungsten with a tungsten alloy, without brazing.The complete technological process of two-component tungsten PIM of samples, including the subsequent heat-treatment process, is outlined. Characterization results of the finished samples, e.g., microstructure, hardness, density, and joining zone quality, are discussed.