ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yasunori Iwai, Katsumi Sato, Toshihiko Yamanishi
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 83-88
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14117
Articles are hosted by Taylor and Francis Online.
In the case of a fire accident in a fusion plant, tritiated organic substances will be produced. We have developed a Pd/ZrO2 catalyst applicable for the oxidation of tritiated organic substances. In this study, two different weight ratios of palladium, 5 and 10 g/l, were selected. The overall reaction rate constant of tritiated methane oxidation with the palladium catalysts in a flow-through system were determined as a function of space velocity from 1200 to 7000 h-1 , methane concentration in carrier from 0.004 to 100 ppm, and temperature of catalyst from 323 to 673 K. As-received catalysts showed a large overall reaction rate constant over the whole tested temperature range. However, the constants gradually decreased after a while. The considerable decrease was evaluated especially over the lower temperature range. The decrease has been explained as caused by the layers of produced water that formed on the surface of the catalyst playing the role of obstacle to reactant transport onto the noble metal deposited on the catalyst. The performance of 10 g/l catalyst was superior to that of 5 g/l over the whole tested temperature range. The overall reaction rate constant was dependent on the space velocity and independent of methane concentration in the carrier.