ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kenzo Munakata, Yoshinori Kawamura
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 71-76
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14115
Articles are hosted by Taylor and Francis Online.
Cryogenic adsorption is effective for the recovery of low-concentration hydrogen isotopes in bulk helium gases. In a fusion power plant, application of this process is foreseen for the recovery of tritium from the blanket sweep gas and cleanup of the helium discharge exhaust gas. The authors performed a screening test to find more suitable adsorbents for the recovery of hydrogen isotopes from the bulk helium gas at liquid nitrogen temperature. The screening test indicated that a natural mordenite adsorbent has a quite high adsorption capacity for hydrogen under a helium atmosphere. For the adsorption of deuterium, it was found that the natural mordenite adsorbent possesses a high adsorption capacity even at the lower pressure range of hydrogen and deuterium. The adsorption rates of hydrogen and deuterium were quantified by analyzing breakthrough curves obtained in experiments. Evaluated effective pore diffusivities of hydrogen isotopes in the mordenite adsorbents are considerably higher than those in MS5A adsorbents. Thus, it can be said that the natural mordenite adsorbents are suitable for adsorption of hydrogen isotopes from the viewpoint of adsorption rates, as well. The results suggest that mordenite-type adsorbents are promising for the recovery of low-concentration hydrogen isotopes from the helium bulk gas.