ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Kenzo Munakata, Yoshinori Kawamura
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 71-76
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14115
Articles are hosted by Taylor and Francis Online.
Cryogenic adsorption is effective for the recovery of low-concentration hydrogen isotopes in bulk helium gases. In a fusion power plant, application of this process is foreseen for the recovery of tritium from the blanket sweep gas and cleanup of the helium discharge exhaust gas. The authors performed a screening test to find more suitable adsorbents for the recovery of hydrogen isotopes from the bulk helium gas at liquid nitrogen temperature. The screening test indicated that a natural mordenite adsorbent has a quite high adsorption capacity for hydrogen under a helium atmosphere. For the adsorption of deuterium, it was found that the natural mordenite adsorbent possesses a high adsorption capacity even at the lower pressure range of hydrogen and deuterium. The adsorption rates of hydrogen and deuterium were quantified by analyzing breakthrough curves obtained in experiments. Evaluated effective pore diffusivities of hydrogen isotopes in the mordenite adsorbents are considerably higher than those in MS5A adsorbents. Thus, it can be said that the natural mordenite adsorbents are suitable for adsorption of hydrogen isotopes from the viewpoint of adsorption rates, as well. The results suggest that mordenite-type adsorbents are promising for the recovery of low-concentration hydrogen isotopes from the helium bulk gas.