ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Y. Yamauchi, Y. Kosaka, Y. Nobuta, T. Hino, K. Nishimura
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 66-70
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14114
Articles are hosted by Taylor and Francis Online.
The removal of deuterium retained in boron, titanium, and titanium oxide films by neon glow discharge was investigated. The films were exposed to deuterium glow plasma to retain the deuterium and subsequently exposed to neon glow plasma. The temperature of the exposures was room temperature. The residual deuterium was estimated by thermal desorption spectroscopy. The removal ratio of deuterium by neon glow discharge largely depended on the material. Namely, the ratios for boron, titanium, or titanium oxide were 14%, 2%, or 40%, respectively. The ratios for the boron and the titanium oxide roughly agreed with the estimation from SRIM code calculations, while the ratio for the titanium did not agree with the estimation. These results suggest that the reduction of the deuterium retention is owing to the etching and the ion impact desorption of neon ions in the cases of boron and titanium oxide, and the prompt re-trapping of deuterium by titanium atoms might occur in the case of titanium. The comparison between titanium and titanium oxide clearly shows that the removal effect by glow discharge largely depended on the surface conditions, such as oxygen impurity.