ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Masafumi Yoshida, Tetsuo Tanabe, Takao Hayashi, Tomohide Nakano, Junnichi Yagyu, Yasuhiko Miyo, Kei Masaki, Kiyoshi Itami
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 61-65
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14113
Articles are hosted by Taylor and Francis Online.
Tritium (T) retentions in tile gaps (side surfaces) of the first wall of JT-60U were measured by a tritium imaging plate technique (TIPT). For all first wall tiles measured here, the T retention decreased from the front (entrance) to the bottom of the side surfaces showing superposing two exponential decays, which were already observed in the divertor region. Heavier erosion on the plasma-facing surface resulted in higher T retention in the front-side surfaces in the vicinity of the plasma-facing surface. In addition, wider gap width also resulted in higher T retention in the bottom side surfaces. Using the TIPT results, overall T retention in the side surfaces of the whole first wall was estimated to be [approximately]6 × 1017 T atoms, which was only one-tenth of total T retention in the plasma-facing surface of the first wall in JT-60U.