ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Masafumi Yoshida, Tetsuo Tanabe, Takao Hayashi, Tomohide Nakano, Junnichi Yagyu, Yasuhiko Miyo, Kei Masaki, Kiyoshi Itami
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 61-65
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14113
Articles are hosted by Taylor and Francis Online.
Tritium (T) retentions in tile gaps (side surfaces) of the first wall of JT-60U were measured by a tritium imaging plate technique (TIPT). For all first wall tiles measured here, the T retention decreased from the front (entrance) to the bottom of the side surfaces showing superposing two exponential decays, which were already observed in the divertor region. Heavier erosion on the plasma-facing surface resulted in higher T retention in the front-side surfaces in the vicinity of the plasma-facing surface. In addition, wider gap width also resulted in higher T retention in the bottom side surfaces. Using the TIPT results, overall T retention in the side surfaces of the whole first wall was estimated to be [approximately]6 × 1017 T atoms, which was only one-tenth of total T retention in the plasma-facing surface of the first wall in JT-60U.