ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
N. Bekris, M. Sirch
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 50-55
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14111
Articles are hosted by Taylor and Francis Online.
Among the various getter materials the interalloy ZrCo has been selected by the ITER team as the reference material for the storage of hydrogen isotopes at the tritium plant because of its excellent getter properties, which are comparable to those of uranium. Only certain conditions, such as the presence of high partial pressure of H2 at relatively low temperatures (350°C to 400°C), or during repeated hydrogen absorption-desorption heat cycles, have been a matter of concern, because under these conditions ZrCo can lose its gettering properties. Indeed, under repetitive loading/deloading cycling, the getter hydride (ZrCoH3) tends to disproportionate, i.e., to convert into ZrH2 and ZrCo2 and thus show a significant performance degradation of its gettering properties. Disproportionation is a major drawback as it fixes almost irreversibly part of the hydrogen (hence, tritium) into a ZrH2 form.To understand the underlying mechanism leading to the disproportionation, a detailed investigation has been undertaken. Using thermal analytical methods and based on crystallographic considerations, we came to the conclusion that the driving force for such disproportionation has to be attributed to the hydrogen occupation (taking place during the hydridation) of the various crystallographic sites available to it. During the hydridation process [approximately]4% of hydrogen goes into the less-stable 8f2 and 8e sites, where the Zr-H distance is shorter than the ZrH2 distance. Therefore, during the dehydridation process these sites are not releasing the hydrogen, but rather they are generating the very stable ZrH2, thus leading to the partial disproportionation of the material.Therefore, we may conclude that ZrCo it is not adequate for the storage of tritium and other hydrogen isotopes within the tritium plant of ITER, and consequently, we would not recommend it for such use.