ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
N. Bekris, M. Sirch
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 50-55
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14111
Articles are hosted by Taylor and Francis Online.
Among the various getter materials the interalloy ZrCo has been selected by the ITER team as the reference material for the storage of hydrogen isotopes at the tritium plant because of its excellent getter properties, which are comparable to those of uranium. Only certain conditions, such as the presence of high partial pressure of H2 at relatively low temperatures (350°C to 400°C), or during repeated hydrogen absorption-desorption heat cycles, have been a matter of concern, because under these conditions ZrCo can lose its gettering properties. Indeed, under repetitive loading/deloading cycling, the getter hydride (ZrCoH3) tends to disproportionate, i.e., to convert into ZrH2 and ZrCo2 and thus show a significant performance degradation of its gettering properties. Disproportionation is a major drawback as it fixes almost irreversibly part of the hydrogen (hence, tritium) into a ZrH2 form.To understand the underlying mechanism leading to the disproportionation, a detailed investigation has been undertaken. Using thermal analytical methods and based on crystallographic considerations, we came to the conclusion that the driving force for such disproportionation has to be attributed to the hydrogen occupation (taking place during the hydridation) of the various crystallographic sites available to it. During the hydridation process [approximately]4% of hydrogen goes into the less-stable 8f2 and 8e sites, where the Zr-H distance is shorter than the ZrH2 distance. Therefore, during the dehydridation process these sites are not releasing the hydrogen, but rather they are generating the very stable ZrH2, thus leading to the partial disproportionation of the material.Therefore, we may conclude that ZrCo it is not adequate for the storage of tritium and other hydrogen isotopes within the tritium plant of ITER, and consequently, we would not recommend it for such use.