ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
N. Bekris, M. Sirch
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 50-55
Hydrogen/Tritium Behavior | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14111
Articles are hosted by Taylor and Francis Online.
Among the various getter materials the interalloy ZrCo has been selected by the ITER team as the reference material for the storage of hydrogen isotopes at the tritium plant because of its excellent getter properties, which are comparable to those of uranium. Only certain conditions, such as the presence of high partial pressure of H2 at relatively low temperatures (350°C to 400°C), or during repeated hydrogen absorption-desorption heat cycles, have been a matter of concern, because under these conditions ZrCo can lose its gettering properties. Indeed, under repetitive loading/deloading cycling, the getter hydride (ZrCoH3) tends to disproportionate, i.e., to convert into ZrH2 and ZrCo2 and thus show a significant performance degradation of its gettering properties. Disproportionation is a major drawback as it fixes almost irreversibly part of the hydrogen (hence, tritium) into a ZrH2 form.To understand the underlying mechanism leading to the disproportionation, a detailed investigation has been undertaken. Using thermal analytical methods and based on crystallographic considerations, we came to the conclusion that the driving force for such disproportionation has to be attributed to the hydrogen occupation (taking place during the hydridation) of the various crystallographic sites available to it. During the hydridation process [approximately]4% of hydrogen goes into the less-stable 8f2 and 8e sites, where the Zr-H distance is shorter than the ZrH2 distance. Therefore, during the dehydridation process these sites are not releasing the hydrogen, but rather they are generating the very stable ZrH2, thus leading to the partial disproportionation of the material.Therefore, we may conclude that ZrCo it is not adequate for the storage of tritium and other hydrogen isotopes within the tritium plant of ITER, and consequently, we would not recommend it for such use.