ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
F. R. A. Onofri, S. Barbosa, M. Wozniak, J. Mroczka, D. Vrel, C. Grisolia
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 39-45
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14109
Articles are hosted by Taylor and Francis Online.
We investigate the ability of light extinction spectrometry (LES) to characterize, at long distances, the size distribution and concentration of dust mobilized by laser cleaning methods (ITER wall detritiation and characterization of deposition layers) or by experiments dealing with a loss-of-vacuum accident. Potentially harmful effects induced by wall proximity, plasma plume broadband emission, and associated shock waves are shown to have a negligible influence on LES measurements, which demonstrates the interest in this optical technique for the aforementioned studies. However, our experimental results, based on aerosols of silica and tungsten powder aggregates, show that the present setup allows the characterization of dust volume fractions of less than [approximately equal]1-10 ppb for a probing length of 1 m (or by extrapolation [approximately equal]0.1-1 ppb for a probing length of 10 m).