ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yu. Igitkhanov, B. Bazylev, I. Landman
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 34-38
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14108
Articles are hosted by Taylor and Francis Online.
The thermal performance of the first wall (FW) monoblock module, made from carbon fiber composite (CFC) or tungsten alloy with a castellated plasma phasing surface, was analyzed for runaway electron (RE) impact under reactor conditions. A water cooling system with Cu pipes embedded into the module is used. Calculations demonstrate that, in ITER, for an expected RE pulse duration [approximately]0.1sec and deposition energy of [approximately]30MJ/m2 , the heat generation in a W monoblock occurs within a thin surface layer ([approximately]10m) which, however, does not melt. In the CFC case, heat generation occurs deep in the bulk ([approximately]1000m), but CFC does not experience brittle destruction. The intense X-ray radiation caused by runaways is strongly attenuated within a 10-mm-thick layer of W and does not pose any threat for the cooling system. For the CFC case, a small but significant heat generation caused by the RE can occur in the Cu pipe.