ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Yu. Igitkhanov, B. Bazylev, I. Landman
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 34-38
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14108
Articles are hosted by Taylor and Francis Online.
The thermal performance of the first wall (FW) monoblock module, made from carbon fiber composite (CFC) or tungsten alloy with a castellated plasma phasing surface, was analyzed for runaway electron (RE) impact under reactor conditions. A water cooling system with Cu pipes embedded into the module is used. Calculations demonstrate that, in ITER, for an expected RE pulse duration [approximately]0.1sec and deposition energy of [approximately]30MJ/m2 , the heat generation in a W monoblock occurs within a thin surface layer ([approximately]10m) which, however, does not melt. In the CFC case, heat generation occurs deep in the bulk ([approximately]1000m), but CFC does not experience brittle destruction. The intense X-ray radiation caused by runaways is strongly attenuated within a 10-mm-thick layer of W and does not pose any threat for the cooling system. For the CFC case, a small but significant heat generation caused by the RE can occur in the Cu pipe.