ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
Jae Sung Yoon, Suk Kwon Kim, Eo Hwak Lee, Seungyon Cho, Dong Won Lee
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 29-33
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14107
Articles are hosted by Taylor and Francis Online.
Korea has developed a liquid breeder blanket for the test blanket module (TBM) program in ITER with a helium-cooled molten lithium concept. Since ferritic martensitic steel is used as the structural material for the TBM first wall (FW), various joining methods have been developed with hot isostatic pressing in order to develop a TBM FW fabrication method. In this study, three small mock-ups were fabricated in order to develop and verify the manufacturing method of the TBM FW through the pressure and helium leak tests. They were successfully fabricated. After fabrication and checking the performance of the mock-ups, a 1/6-scale mock-up was fabricated with a 260-mm height, 444-mm width, and 435-mm depth, in which width and depth were preserved and the number of channels was reduced from 60 to 10. The mock-up has a U-type shape and ten channels with a size of 20-mm height and 10-mm width for cooling. A manifold for flow testing and high heat flux testing of the 1/6-scale mock-up was designed and fabricated to distribute fluid uniformly to the mock-up.