ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
M. Roedig, V. Barabash, R. Eaton, T. Hirai, I. Kupriyanov, J. Linke, X. Liu, A. Schmidt, Zh. Wang
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 16-20
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14105
Articles are hosted by Taylor and Francis Online.
In order to qualify new beryllium grades for ITER, several Russian and Chinese materials were tested in the electron beam facility JUDITH-1 and compared to the reference material S65C. In a former campaign, samples from these materials were loaded in thermal shock experiments with single shots and multiple shots. The present work is an extension of this work to other loading scenarios.Four actively cooled mock-ups were produced in Russia and in China (two by each party). These mock-ups consisted of a water-cooled CuCrZr body with four tiles from different beryllium grades. Both parties used their own joining techniques, but each of the mock-ups also contained beryllium tiles from the other party, as well as from S65C.Each tile was loaded by the following scenarios on different surface areas:• simulation of vertical displacement events (VDEs) at 40 MJ/m2, 1 shot, heated area a = 10 × 10 mm2, 50-ms ramp-up, 165-ms steady state• disruption simulation at 3 MJ/m2, 1 shot, heated area a = 5 × 5 mm2, t = 5 ms• repetitive test with 1000 shots at 80 MW/m2 (2 MJ/m2), a = 10 × 10 mm2, t = 25 ms. This loading condition is similar to one that was proposed by Sandia National Laboratory for the comparison of different beryllium grades.Finally, one mock-up by each party underwent a thermal fatigue test with 1000 cycles at 2 MW/m2, 15 s heating, and 15 s cooling (heated area: whole sample surface). Heavy melting was observed in the area of the VDE loading, but no detachment of any of the tiles was found. Following the high-heat-flux experiments in the electron beam facility, post-mortem examinations were performed by optical photography and scanning electron microscopy on the surfaces as well as by metallography. From these analyses, no fundamental differences were found for the damage in the different beryllium grades.