ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
G.-N. Luo, Q. Li, J. M. Chen, X. Liu, W. Liu, Z. J. Zhou, D. M. Yao
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 9-15
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14104
Articles are hosted by Taylor and Francis Online.
A project to realize, in several years, a W/Cu divertor on Experimental Advanced Superconducting Tokamak (EAST) with ITER-like plasma-facing component (PFC) configuration was launched at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in 2010. The ITER-like configuration should withstand the rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under practical long-pulse tokamak plasmas. The project could help not only EAST experiments, but also realize ITER PFC technology validation and bring answers in a timely manner for the ITER full-W divertor for the nuclear phase. Southwest Institute of Physics (SWIP) will have 10% of the first wall (FW) procurement package of the enhanced heat flux (EHF) type. The materials have been developed and characterized according to the ITER-grade material specifications, including vacuum hot pressing (VHP)-Be, CuCrZr alloy, and 316L(N)-IG forged blocks, and qualification testing of the VHP-Be tiles joining to the CuCrZr heat sink by hot isostatic pressing (HIP) has been carried out. Some Chinese universities have started to explore new grades of W materials, e.g., carbide or oxide dispersion strengthened fine grain W materials, and investigated their behavior under high heat loads.