ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
R. Kawana, S. Okayama, M. Ishikawa, Y. Nakashima, Y. Yasaka, H. Takeno, Y. Tomita (19P64)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 385-387
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1410
Articles are hosted by Taylor and Francis Online.
The objective of the present study is to analyze separation capability of charged particles of small-scale cusp type direct energy experimental converter installed at GAMMA 10 by means of numerical simulation with the axisymmetrical two-dimensional approximation. The numerical simulation has given the following results: (1) when the input power of protons is less than or equal to 1W, the protons and the electrons can be separated with the proton collection efficiency of 100%. When the input power of protons is 5W, the protons and the electrons become difficult to be separated with the proton collection efficiency of about 5%. (2) The electrons whose radius of incidence is small become trapped in the separation zone. These results depend on the magnitude of self-induced electric field which is formed by separation of the protons and the electrons.