ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hidefumi Yamaura, Toshiki Takahashi, Yoshiomi Kondoh, Tomohiko Asai, Tsutomu Takahashi (19P59)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 373-375
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1406
Articles are hosted by Taylor and Francis Online.
Rotation of a Field-Reversed Configuration (FRC) plasma due to a resistive flux decay is numerically studied. When the anomaly factor is 10, the flux lifetime is found to be about 60 sec in a case that the external magnetic field is O.4 T and the wall radius is 0.17 m. Single-particle motions in a quasi-steady resistively decaying FRC equilibrium are calculated, and a local flow velocity is estimated by a particle-in-cell method. An electric acceleration of a betatron particle near the field-null is shown; this can cause a plasma rotation. From a comparison of the toroidal ion flow velocity profile between with and without the flux decay, it is found that the ion rotation begins at the field-null.