ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
T. Numakura et al. (19P47)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 343-345
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1396
Articles are hosted by Taylor and Francis Online.
The effects of the plasma-confining potentials and the associated radially sheared electric fields on the central-cell electron energy confinement are theoretically and experimentally investigated in the GAMMA 10 tandem mirror. In particular, the scaling of the central-cell electron temperatures with electron-confining potentials is studied on the basis of the local energy-balance equation. The obtained theoretical scaling of electron temperatures with electron-confining potentials is then compared with the experimentally observed relation between these two parameters.Recently, by the use of new 0.5-MW level gyrotrons in the plug region, four-time progress in the formation of the ion-confining potential c including a new record of 3 kV has been achieved in a hot-ion mode having bulk-ion temperature Ti = several keV. In the hot-ion mode, intermittent vortex-like turbulent structures are observed in the case without the gyrotron injections; in this case, radially produced weak shear of electric fields dEr/dr and appreciable transverse losses are observed. However, during the application of electron-cyclotron heatings, the associated potential rise produces a stronger shear in the central cell (dEr/dr = several 10 kV/m2) resulting in the disappearance of such intermittent turbulent vortices with plasma confinement improvement.In order to investigate the effect of the radially sheared electric fields on the electron energy confinement, the radial profiles of the thermal diffusivity are derived from the local power-balance analysis by the use of the data from the following various diagnostics in the above-described hot-ion mode. The obtained radial profiles of radial electric field and thermal diffusivity imply that the reduction of the thermal diffusivity is associated with the radially produced strong shear of electric fields.