ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Yamaguchi et al. (19P42)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 328-330
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1391
Articles are hosted by Taylor and Francis Online.
A numerical analysis is performed with two-dimensional wave code for effective excitation of the m = + 1 fast Alfvén waves in an axisymmetric central cell of GAMMA 10. Plasma production with fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed with large amplitude when the boundary conditions are satisfied. As an optimum density for each eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For higher density plasma production, formation of eigenmodes should be controlled as the density increases. In this study, pairs of phased antennas are adopted for the effective excitation of eigenmodes. The optimum configuration of antennas and their phase difference are investigated in the present geometry. It is found that the eigenmodes can be effectively excited by controlling the phase difference between a pair of antennas.