ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. Ikeda et al. (19P25)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 283-285
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1376
Articles are hosted by Taylor and Francis Online.
Neutral beam attenuation has been investigated by the beam emission diagnostic system at LHD which consists of a quartz optical fiber, leading to a spectrometer and an ICCD detector. The spectral resolution and the reciprocal dispersion are 0.21 nm and 1.4 nm/mm, respectively. The behavior of the beam-stopping cross-section derived from the beam emission is consistent with that of the cross-section from the Atomic Data and Analysis Structure (ADAS) database. The intensity of the beam emission decreases with increasing stopping cross-section from the use of heavy ions in a discharge. We have also observed that the measured cross-section of the hydrogen is larger than that of the ADAS calculation.