ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
A. Kojima et al. (19P22)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 274-276
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1373
Articles are hosted by Taylor and Francis Online.
The radial particle flux induced by the fluctuation is measured by a Gold Neutral Beam Probe. Then the transient transport phenomenon induced by the fluctuation is investigated in the tandem mirror GAMMA 10. When the drift wave is excited at the central cell, the density near the center is reduced and the divergence of the flux becomes similar to the time derivative of the electron density. It shows that the density reduction is caused by the flux induced by the drift wave. After the density reduction, the drift wave is saturated and comes to the steady state because the density reduction accompanies the reduction of density gradient. Therefore, the transport phenomenon accompanying the growth and saturation of the drift wave is observed experimentally. In the steady state, the phase difference obeys the boltzman relation including the electron non-adiabatic term.