ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
L. A. El-Guebaly, A. Jaber, S. Malang, ARIES-ACT Team
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 321-331
Technical Paper | doi.org/10.13182/FST11-451
Articles are hosted by Taylor and Francis Online.
There is a strong indication that the dual-cooled LiPb blanket is the preferred concept for many fusion power plants being designed around the world. The ability of the blanket to provide tritium self-sufficiency is among the important issues that we investigated in detail for ARIES-ACT to pinpoint the design elements that degrade the breeding the most, using state-of-the-art neutronics codes. A novel stepwise approach was developed to identify the exact cause of the degradation in the tritium breeding ratio (TBR), initially 1.8 for an ideal system, reaching 1.05 for a practical design. More broadly, this paper gives many insights into the impact that internal components of the blanket as well as essential parts of a tokamak can have on the TBR and the more damaging or enhancing conditions or changes to the breeding. To overcome the challenges of dealing with all tritium-related uncertainties in several subsystems, we suggest adjusting the Li enrichment online during operation to mitigate concerns about the danger of placing the plant at risk due to tritium shortage as well as the problem of handling and safeguarding any surplus of tritium.